1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
| import torch import torch.nn as nn import torch.optim as optim from torch.nn.utils.rnn import pad_sequence, pad_packed_sequence, pack_padded_sequence from torch.utils.data import Dataset, DataLoader import math from collections import Counter import re from tqdm import tqdm
PAD_IDX = 0 SOS_IDX = 1 EOS_IDX = 2 UNK_IDX = 3
class Encoder(nn.Module): def __init__(self, vocab_size, embed_size, enc_hidden_size, num_layers=1): super().__init__() self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = nn.GRU(embed_size, enc_hidden_size, num_layers=num_layers, bidirectional=True, batch_first=True) self.fc = nn.Linear(enc_hidden_size*2, enc_hidden_size) def forward(self, src, src_len): embedded = self.embedding(src) packed = pack_padded_sequence(embedded, src_len.cpu(), batch_first=True, enforce_sorted=True) outputs, hidden = self.rnn(packed) outputs, _ = pad_packed_sequence(outputs, batch_first=True) hidden = torch.tanh(self.fc(torch.cat((hidden[-1], hidden[-2]), dim=1))) return outputs, hidden class AdditiveAttention(nn.Module): def __init__(self, key_size, query_size, atten_size): """ key_size: 编码器输出的特征维度 query_size: 解码器隐状态的特征维度 atten_size: 注意力空间维度 """ super().__init__() self.W_k = nn.Linear(key_size, atten_size, bias=False) self.W_q = nn.Linear(query_size, atten_size, bias=False) self.w_v = nn.Linear(atten_size, 1, bias=False) self.tanh = nn.Tanh() def forward(self, keys, values, queries): """ keys(K): [Batch_size, seq_len, key_size] 编码器的输出序列(双向) values(V): [Batch_size, seq_len, value_size] 同Keys queries(Q): [Batch_size, queryp_size] 解码器当前隐状态 """ K = self.W_k(keys) Q = self.W_q(queries).unsqueeze(1)
scores = self.w_v(self.tanh(Q + K)).squeeze(-1) alpha = torch.softmax(scores, dim=-1)
context = torch.bmm(alpha.unsqueeze(1), values).squeeze(1) return context, alpha
class Decoder(nn.Module): def __init__(self, vocab_size, embed_size, dec_hidden_size, enc_hidden_size, attention): super().__init__() self.attention = attention self.trg_vocab_size = vocab_size self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = nn.GRU(embed_size + enc_hidden_size*2, dec_hidden_size, batch_first=True) self.fc = nn.Linear(dec_hidden_size + enc_hidden_size*2 + embed_size, vocab_size)
def forward(self, input, hidden, encoder_outputs): """ input: [batch_size] hidden: [batch_size, dec_hidden_size] encoder_outputs: [batch_size, src_len, enc_hidden_size*2] """ input = input.unsqueeze(1) embedded = self.embedding(input)
context, atten_weights = self.attention( keys=encoder_outputs, values=encoder_outputs, queries=hidden ) context = context.unsqueeze(1)
rnn_input = torch.cat((embedded, context), dim=2) output, hidden = self.rnn(rnn_input, hidden.unsqueeze(0))
output = output.squeeze(1) context = context.squeeze(1) embedded = embedded.squeeze(1)
prediction = self.fc(torch.cat( (output, context, embedded), dim=1 )) return prediction, hidden.squeeze(0), atten_weights
class Seq2Seq(nn.Module): def __init__(self, encoder, decoder, device): super().__init__() self.encoder = encoder self.decoder = decoder self.device = device
def forward(self, src, src_len, trg, teacher_forcing_ratio=0.5): batch_size = src.size(0) trg_len = trg.size(1)
outputs = torch.zeros(batch_size, trg_len, self.decoder.trg_vocab_size).to(self.device)
encoder_outputs, hidden = self.encoder(src, src_len)
input = trg[:, 0]
for i in range(1, trg_len): output, hidden, _ = self.decoder(input, hidden, encoder_outputs) outputs[:, i] = output
teacher_force = torch.rand(1) < teacher_forcing_ratio top1 = output.argmax(1) input = trg[:, i] if teacher_force else top1
return outputs def predict(self, src, src_len, max_len=50): self.eval() with torch.no_grad(): encoder_outputs, hidden = self.encoder(src, src_len) input = torch.ones(src.size(0), 1).fill_(SOS_IDX).long().to(self.device)
outputs = [] attn_weights = []
for t in range(1, max_len): output, hidden, attn = self.decoder(input.squeeze(1), hidden, encoder_outputs) outputs.append(output) attn_weights.append(attn)
top1 = output.argmax(1) input = top1.unsqueeze(1)
if(input == EOS_IDX).all(): break outputs = torch.stack(outputs, 1) attn_weights = torch.stack(attn_weights, 1) return outputs, attn_weights
class TextDataset(Dataset): def __init__(self, en_list, cn_list): self.cn_data = cn_list self.en_data = en_list
def __len__(self): return len(self.en_data) def __getitem__(self, index): return ( torch.tensor(self.en_data[index], dtype=torch.long), torch.tensor(self.cn_data[index], dtype=torch.long), torch.tensor(len(self.en_data[index]), dtype=torch.long) ) def collate_fn(batch): batch.sort(key=lambda x: x[2], reverse=True) en_sequence, cn_sequence, en_lengths = zip(*batch) padded_en_sequence = pad_sequence(en_sequence, batch_first=True, padding_value=PAD_IDX) padded_cn_sequence = pad_sequence(cn_sequence, batch_first=True, padding_value=PAD_IDX) en_lengths = torch.tensor(en_lengths)
return padded_en_sequence, padded_cn_sequence, en_lengths
def en_tokenize(text): text = text.lower() text_list = re.split('(\W)', text) return [text.strip() for text in text_list if text.strip()]
def cn_tokenize(text): return list(text)
def build_vocab(tokenized_text, vocab_limit=800000): if isinstance(tokenized_text[0], list): tokenized_data = [text for text_list in tokenized_text for text in text_list] else: tokenized_data = tokenized_text word_count = Counter(tokenized_data) vocab = sorted(word_count, key=word_count.get, reverse=True)[: vocab_limit] vocab = ['<PAD>', '<SOS>', '<EOS>', '<UNK>'] + vocab word_to_idx = {word: i for i, word in enumerate(vocab)} return word_to_idx, vocab
def train(model, iterator, device, optimizer, loss_function): model.train() total_loss = 0
for src, trg, src_len in tqdm(iterator): src, trg = src.to(device), trg.to(device) optimizer.zero_grad() output = model(src, src_len, trg)
loss = loss_function(output[:, 1:].reshape(-1, output.shape[-1]), trg[:, 1:].reshape(-1)) total_loss += loss.item() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() return total_loss / len(iterator)
with open('./中英翻译数据集/train.zh', 'r') as f: cn_data_1 = f.readlines()[:1000] cn_data = [text.strip() for text in cn_data_1]
with open('./中英翻译数据集/train.en', 'r') as f: en_data_1 = f.readlines()[:1000] en_data = [text.strip() for text in en_data_1] cn_data_tokenized = [cn_tokenize(text) for text in cn_data] en_data_tokenized = [en_tokenize(text) for text in en_data]
cn_word_to_idx, cn_vocab = build_vocab(cn_data_tokenized) cn_idx_to_word = {i: word for i, word in enumerate(cn_vocab)} cn_vocab_size = len(cn_vocab)
en_word_to_idx, en_vocab = build_vocab(en_data_tokenized) en_idx_to_word = {i: word for i, word in enumerate(en_vocab)} en_vocab_size = len(en_vocab)
cn_data_tokenized = [['<SOS>'] + text_list + ['<EOS>'] for text_list in cn_data_tokenized]
cn_data_idx = [[cn_word_to_idx[word] if word in cn_word_to_idx else UNK_IDX for word in text_list] for text_list in cn_data_tokenized] en_data_idx = [[en_word_to_idx[word] if word in en_word_to_idx else UNK_IDX for word in text_list] for text_list in en_data_tokenized]
dataset = TextDataset(en_data_idx, cn_data_idx) dataloader = DataLoader(dataset, batch_size=8, shuffle=True, collate_fn=collate_fn)
enc_hidden_size = 512 dec_hidden_size = 512 enc_emb_size = 256 dec_emb_size = 256 atten_size = 256 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') attention = AdditiveAttention( key_size = enc_hidden_size*2, query_size=dec_hidden_size, atten_size=atten_size )
encoder = Encoder( vocab_size=en_vocab_size, embed_size=enc_emb_size, enc_hidden_size=enc_hidden_size, num_layers=3 )
decoder = Decoder( vocab_size=cn_vocab_size, dec_hidden_size=dec_hidden_size, enc_hidden_size=enc_hidden_size, embed_size=dec_emb_size, attention=attention )
model = Seq2Seq(encoder, decoder, device).to(device)
optimizer = optim.Adam(model.parameters()) loss_function = nn.CrossEntropyLoss(ignore_index=PAD_IDX)
num_epochs = 5 for epoch in range(num_epochs): Loss = train(model, dataloader, device, optimizer, loss_function) print(f'Epoch {epoch + 1}, Loss {Loss:.4f}')
|