1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
| import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms from d2l import torch as d2l import time
class Bottleneck(nn.Module): def __init__(self, in_channels, out_channels, resnet = True): super().__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.conv3 = nn.Conv2d(out_channels, out_channels, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.identity = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.resnet = resnet
def forward(self, x): identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out))
if self.resnet: identity = self.identity(x) out += identity return self.relu(out)
class Net(nn.Module): def __init__(self, layers, num_classes=10, resnet=True): super().__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=1, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layers1 = self._make_layers(layers[0], 64, 128, resnet) self.layers2 = self._make_layers(layers[1], 128, 256, resnet) self.layers3 = self._make_layers(layers[2], 256, 512, resnet) self.layers4 = self._make_layers(layers[3], 512, 512, resnet) self.flatten = nn.Flatten() self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1)) self.fc = nn.Linear(512, num_classes)
def _make_layers(self, blocks, in_channels, out_channels, resnet): layers = [] for _ in range(blocks): layers.append(Bottleneck(in_channels, out_channels, resnet)) in_channels = out_channels return nn.Sequential(*layers)
def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.maxpool(x) x = self.layers1(x) x = self.layers2(x) x = self.maxpool(x) x = self.layers3(x) x = self.layers4(x) x = self.maxpool(x)
x = self.avgpool(x) x = self.flatten(x) x = self.fc(x)
return x
def train(data_loader, model, device, optimizer, loss_function): model.train() start_time = time.time() num = len(data_loader.dataset) L = 0 for x, y in data_loader: x, y = x.to(device), y.to(device) y_hat = model(x) loss = loss_function(y_hat, y) L += loss.item() * len(y) optimizer.zero_grad() loss.backward() optimizer.step() return L / num, num / (time.time() - start_time)
def test(data_loader, model, device): num = len(data_loader.dataset) right_num = 0 model.eval() with torch.no_grad(): for x, y in data_loader: x, y = x.to(device), y.to(device) y_hat = model(x).argmax(dim=1) right_num += (y_hat == y).sum().item() return right_num / num
transform_train = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) train_data = datasets.CIFAR10(root='./data', transform=transform_train, train=True, download=False) test_data = datasets.CIFAR10(root='./data', transform=transform_test, train=False, download=False) train_loader = DataLoader(train_data, shuffle=True, batch_size=256, num_workers=4) test_loader = DataLoader(test_data, shuffle=False, batch_size=256, num_workers=4)
model = Net([1, 2, 2, 2], num_classes=10, resnet=True) device = torch.device('cuda:0') def init_weight(m): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight) model.apply(init_weight) model.to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001) loss_function = nn.CrossEntropyLoss()
model = nn.SyncBatchNorm.convert_sync_batchnorm(model) if torch.cuda.device_count() > 1: model = nn.DataParallel(model)
num_epochs = 10 start_time = time.time() for epoch in range(num_epochs): loss, per_time = train(train_loader, model, device, optimizer, loss_function) print(f'Epoch {epoch + 1}, Loss {loss:.5f}, {per_time:.2f} examples/sec, Test Acc {test(test_loader, model, device)*100:.2f}%') print(f'用时:{time.time() - start_time}秒')
|